Defining and launching preconfigured pipelines#
Pipelines defined in configuration file can be pre configured i.e. they include all the configurations prior to runtime including any source
, destination
, parameters
etc
These pipelines can be auto started during EVAM start up by setting auto_start
flag to TRUE
. Refer to this tutorial and this section.
Here is an example of a pre configured pipeline. The detection results are written in /tmp/results.jsonl
file in JSON format.
"pipelines": [
{
"name": "pallet_defect_detection",
"source": "gstreamer",
"queue_maxsize": 50,
"pipeline": "multifilesrc loop=TRUE location=/home/pipeline-server/resources/videos/warehouse.avi ! h264parse ! decodebin ! videoconvert ! video/x-raw,format=RGB ! udfloader name=udfloader ! gvametaconvert add-empty-results=true format=json ! gvametapublish method=file file-path=/tmp/results.jsonl ! appsink name=destination",
"auto_start": true,
"udfs": {
"udfloader": [
{
"name": "python.geti_udf.geti_udf",
"type": "python",
"device": "CPU",
"visualize": "true",
"deployment": "./resources/models/geti/pallet_defect_detection/deployment",
"metadata_converter": "null"
}
]
}
}
Alternatively, pre-configured pipelines can also be started via REST request (empty) after setting auto_start
flag to FALSE
curl localhost:8080/pipelines/user_defined_pipelines/pallet_defect_detection -X POST -H 'Content-Type: application/json' -d '{}'